Advertisements
Advertisements
Question
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solution
Given `(sqrt(3/5))^(x+1)=125/27`
`(sqrt(3/5))^(x+1)=(5/3)^3`
`rArr(3/5)^((x+1)/2)=(3/5)^-3`
On comparing we get,
`(x+1)/2=-3`
⇒ x + 1 = -3 x 2
⇒ x + 1 = -6
⇒ x = -6 - 1
⇒ x = -7
Hence, the value of x = -7.
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`4^(2x)=1/32`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
The simplest rationalising factor of \[\sqrt[3]{500}\] is
Find:-
`32^(2/5)`
Find:-
`125^((-1)/3)`
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.