Advertisements
Advertisements
Question
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.
Solution
Given that `a = 2 + sqrt(3)`,
∴ We have `1/a = 1/(2 + sqrt(3))`
⇒ `1/a = 1/(2 + sqrt(3)) xx (2 - sqrt(3))/(2 - sqrt(3))` ...[Using (a – b)(a + b) = a2 – b2]
⇒ `1/a = (2 - sqrt(3))/(4 - 3)`
⇒ `1/a = 2 - sqrt(3)`
Now ` a - 1/a = 2 + sqrt(3) - (2 - sqrt(3))`
⇒ `a - 1/a = 2sqrt(3)`
APPEARS IN
RELATED QUESTIONS
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Simplify:
`root5((32)^-3)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Write the value of \[\sqrt[3]{125 \times 27}\].
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is