English

Solve the Following Equation: `8^(X+1)=16^(Y+2)` And, `(1/2)^(3+X)=(1/4)^(3y)` - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`

Solution

`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`

`rArr(2^3)^(x+1)=(2^4)^(y+2)` and `(1/2)^(3+x)=(1/2^2)^(3y)`

`rArr(2)^(3x+3)=(2)^(4y+8)` and `(1/2)^(3+x)=(1/2)^(6y)`

⇒ 3x + 3 = 4y + 8 and 3 + x = 6y

⇒ 3x - 4y = 8 - 3

⇒ 3x - 4y = 5  ...........(i)

Now,

3 + x = 6y

x = 6y - 3             ..............(ii)

Putting x = 6y - 3 in equation (i), we get

3(6y - 3) - 4y = 5

⇒ 18y - 9 - 4y = 5

⇒ 14y = 14

⇒ y = 1

Putting y = 1 in equation (ii) we get,

x = 6(1) - 3 = 3

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 16.4 | Page 26

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×