Advertisements
Advertisements
Question
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Solution
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
`rArr(2^3)^(x+1)=(2^4)^(y+2)` and `(1/2)^(3+x)=(1/2^2)^(3y)`
`rArr(2)^(3x+3)=(2)^(4y+8)` and `(1/2)^(3+x)=(1/2)^(6y)`
⇒ 3x + 3 = 4y + 8 and 3 + x = 6y
⇒ 3x - 4y = 8 - 3
⇒ 3x - 4y = 5 ...........(i)
Now,
3 + x = 6y
x = 6y - 3 ..............(ii)
Putting x = 6y - 3 in equation (i), we get
3(6y - 3) - 4y = 5
⇒ 18y - 9 - 4y = 5
⇒ 14y = 14
⇒ y = 1
Putting y = 1 in equation (ii) we get,
x = 6(1) - 3 = 3
APPEARS IN
RELATED QUESTIONS
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
State the quotient law of exponents.
Write the value of \[\sqrt[3]{125 \times 27}\].
The product of the square root of x with the cube root of x is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
Simplify:
`11^(1/2)/11^(1/4)`