Advertisements
Advertisements
प्रश्न
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
उत्तर
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
`rArr(2^3)^(x+1)=(2^4)^(y+2)` and `(1/2)^(3+x)=(1/2^2)^(3y)`
`rArr(2)^(3x+3)=(2)^(4y+8)` and `(1/2)^(3+x)=(1/2)^(6y)`
⇒ 3x + 3 = 4y + 8 and 3 + x = 6y
⇒ 3x - 4y = 8 - 3
⇒ 3x - 4y = 5 ...........(i)
Now,
3 + x = 6y
x = 6y - 3 ..............(ii)
Putting x = 6y - 3 in equation (i), we get
3(6y - 3) - 4y = 5
⇒ 18y - 9 - 4y = 5
⇒ 14y = 14
⇒ y = 1
Putting y = 1 in equation (ii) we get,
x = 6(1) - 3 = 3
APPEARS IN
संबंधित प्रश्न
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If x is a positive real number and x2 = 2, then x3 =
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:-
`(1/3^3)^7`