Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
उत्तर
Given `2^(5x)div2x=root5(2^20)`
By using rational exponents `a^m/a^n=a^(m-n)` we get,
`2^(5x-x)=2^(20xx1/5)`
`2^(5x-x)=2^4`
On equating the exponents we get,
5x - x = 4
4x = 4
x = 4/4
x = 1
The value of x = 1
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
State the quotient law of exponents.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If o <y <x, which statement must be true?
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`