Advertisements
Advertisements
प्रश्न
State the quotient law of exponents.
उत्तर
The quotient rule tells us that we can divide two powers with the same base by subtracting the exponents. If a is a non-zero real number and m, n are positive integers, then `a^m/a^n = a^(m-n)`
We shall divide the proof into three parts
(i) when m>n
(ii) when m = n
(iii) when m < n
Case 1
When m > n
We have
\[\frac{a^m}{a^n} = \frac{a \times a \times a . . . .\text { to m factors }}{a \times a \times a . . . . \text { to n factors }}\]
\[\frac{a^m}{a^n} = a \times a \times a . . . . to (m - n) \text { factors }\]
\[\frac{a^m}{a^n} = a^{m - n}\]
Case 2
When m = n
We get
`a^m/a^n = a^m/a^m`
Cancelling common factors in numerator and denominator we get,
`a^m/a^n = 1`
By definition we can write 1 as a°
`a^m/a^n = a^(m-m)`
`a^m/a^n = a^(m-n)`
Case 3
When m < n
In this case, we have
`a^m/a^n = 1/(axx axx a ....(n-m))`
`a^m/a^n = 1/(a^(n-m))`
`a^m/a^n = a^-(n-m)`
`a^m/a^n = a^(m-n)`
Hence `a^m/a^n = a^(m-n)`, whether m < n, m = n or,m > n
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(3x-7)=256`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Write the value of \[\sqrt[3]{125 \times 27}\].
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]