हिंदी

State the Quotient Law of Exponents. - Mathematics

Advertisements
Advertisements

प्रश्न

State the quotient law of exponents.

संक्षेप में उत्तर

उत्तर

The quotient rule tells us that we can divide two powers with the same base by subtracting the exponents. If a is a non-zero real number and m, n are positive integers, then  `a^m/a^n = a^(m-n)`

We shall divide the proof into three parts 

(i) when  m>n

(ii) when  m  = n 

(iii) when  m < n

Case 1 

When   m > n

We have 

\[\frac{a^m}{a^n} = \frac{a \times a \times a . . . .\text {  to m factors }}{a \times a \times a . . . . \text { to n factors }}\]

\[\frac{a^m}{a^n} = a \times a \times a . . . . to (m - n) \text { factors }\]

\[\frac{a^m}{a^n} = a^{m - n}\]

Case 2 

When  m = n

We get

 `a^m/a^n = a^m/a^m`

Cancelling common factors in numerator and denominator we get,

`a^m/a^n = 1`

By definition we can write 1 as a°

 `a^m/a^n = a^(m-m)`

 `a^m/a^n = a^(m-n)`

Case 3 

When  m < n

In this case, we have 

`a^m/a^n = 1/(axx axx a ....(n-m))`

`a^m/a^n = 1/(a^(n-m))`

`a^m/a^n = a^-(n-m)`

`a^m/a^n = a^(m-n)`

Hence `a^m/a^n = a^(m-n)`, whether m < n, m = n or,m > n

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Exponents of Real Numbers - Exercise 2.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 2 Exponents of Real Numbers
Exercise 2.3 | Q 3 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×