Advertisements
Advertisements
प्रश्न
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
उत्तर
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
`=(x^((a+b)(a-b))/x^(c(a-b)))(x^((b+c)(b-c))/x^(a(b-c)))(x^((c+a)(c-a))/x^(b(c-a)))`
`=(x^(a^2-b^2)/x^(ca-bc))(x^(b^2-c^2)/x^(ab-ac))(x^(c^2-a^2)/x^(bc-ab))`
`=x^(a^2-b^2+b^2-c^2+c^2-a^2)/x^(ca-bc+ab-ac+bc-ab)`
`=x^0/x^0`
= 1
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`(0.001)^(1/3)`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Solve the following equation:
`3^(x+1)=27xx3^4`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
(256)0.16 × (256)0.09
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]