Advertisements
Advertisements
Question
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
Options
`31/2`
`33/2`
16
`257/16`
Solution
`bb(33/2)`
Explanation:
g = `t^(2/3) + 4t^(-1/2)`
= `(64)^(2/3) + 4(64)^(-1/2)`
= `[(64)^(1/3)]^3 + 4 (1/64)^(1/2)`
= `4^2 + 4(1/8)`
= `16 + 1/2 = 38/2`
APPEARS IN
RELATED QUESTIONS
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
If 102y = 25, then 10-y equals
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
Simplify:-
`(1/3^3)^7`