Advertisements
Advertisements
प्रश्न
Simplify:
`(16^(-1/5))^(5/2)`
उत्तर
Given `(16^(-1/5))^(5/2)`
`(16^(-1/5))^(5/2)=16^(-1/5xx5/2)`
`=16^(-1/2)`
By using law of rational exponents `a^-n=1/a^n` we have
`(16^(-1/5))^(5/2)=1/16^(1/2)`
`=1/4^(2xx1/2)`
`=1/4`
Hence the value of `(16^(-1/5))^(5/2)` is `1/4`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Find:-
`125^(1/3)`
Find:-
`32^(2/5)`
Find:-
`125^((-1)/3)`