Advertisements
Advertisements
प्रश्न
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
उत्तर
Given `root3 (a^6b^-4)=a^xb^(2y)`
`rArr(a^6b^-4)^(1/3)=a^xb^(2y)`
`rArra^(6xx1/3)b^(-4xx1/3)=a^xb^(2y)`
`rArra^2b^(-4/3)=a^xb^(2y)`
⇒ x = 2 and y = -2/3
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`(0.001)^(1/3)`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Solve the following equation:
`3^(x+1)=27xx3^4`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
If x is a positive real number and x2 = 2, then x3 =
The simplest rationalising factor of \[\sqrt[3]{500}\] is