Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
उत्तर
`2^(5x+3)=8^(x+3)`
`rArr2^(5x+3)=(2^3)^(x+3)`
`rArr2^(5x+3)=2^(3x+9)`
⇒ 5x + 3 = 3x + 9
⇒ 5x - 3x = 9 - 3
⇒ 2x = 6
⇒ x = 6/2
⇒ x = 3
APPEARS IN
संबंधित प्रश्न
Simplify:
`root3((343)^-2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Solve the following equation:
`3^(x+1)=27xx3^4`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.