Advertisements
Advertisements
Question
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Solution
`2^(5x+3)=8^(x+3)`
`rArr2^(5x+3)=(2^3)^(x+3)`
`rArr2^(5x+3)=2^(3x+9)`
⇒ 5x + 3 = 3x + 9
⇒ 5x - 3x = 9 - 3
⇒ 2x = 6
⇒ x = 6/2
⇒ x = 3
APPEARS IN
RELATED QUESTIONS
Find:-
`64^(1/2)`
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`root5((32)^-3)`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is