Advertisements
Advertisements
Question
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Solution
Consider the left hand side:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))`
`=1/(1+x^b/x^a+x^c/x^a)+1/(1+x^a/x^b+x^c/x^b)+1/(1+x^b/x^c+x^a/x^c)`
`=1/((x^a+x^b+x^c)/x^a)+1/((x^b+x^a+x^c)/x^b)+1/((x^c+x^b+x^a)/x^c)`
`=x^a/(x^a+x^b+x^c)+x^b/(x^b+x^a+x^c)+x^c/(x^c+x^b+x^a)`
`=(x^a+x^b+x^c)/(x^a+x^b+x^c)`
= 1
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Solve the following equation for x:
`4^(2x)=1/32`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]