Advertisements
Advertisements
Question
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Solution
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
`rArr4^(2x)=(sqrt8)^2` and `(root3 16)^(-6/y)=(sqrt8)^2`
`rArr4^(2x)=(8^1/2xx2)` and `(16^(1/3xx-6/y))=(8^1/2xx2)`
`rArr4^(2x)=8` and `(16^(-2/y))=8`
`rArr2^(4x)=2^3` and `(2^(-8/y))=2^3`
`rArr4x=3` and `-8/y=3`
`rArrx=3/4` and `y=-8/3`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
State the quotient law of exponents.
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If x is a positive real number and x2 = 2, then x3 =
The simplest rationalising factor of \[\sqrt[3]{500}\] is
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`