Advertisements
Advertisements
Question
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
Options
`sqrt3 - 5`
`3 - sqrt5`
`sqrt3 - sqrt5`
`sqrt3 + sqrt5`
Solution
The simplest rationalising factor of `sqrt3 + sqrt5` is `bbunderline(sqrt3 - sqrt5)`.
Explanation:
The simplest rationalising factor of `sqrt3 + sqrt5` is `sqrt3 - sqrt5` as `(sqrta + sqrtb)(sqrta - sqrtb) = a - b`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Find the value of x in the following:
`5^(2x+3)=1`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If 24 × 42 =16x, then find the value of x.
The value of x − yx-y when x = 2 and y = −2 is
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =