Advertisements
Advertisements
Question
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
Options
\[2\sqrt{5} + 3\]
\[2\sqrt{5} + \sqrt{3}\]
\[\sqrt{5} + \sqrt{3}\]
\[\sqrt{5} - \sqrt{3}\]
Solution
We know that rationalization factor for `asqrtb - sqrtc` is .`asqrtb +sqrtc` Hence rationalization factor of `2sqrt5-sqrt3`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If (23)2 = 4x, then 3x =
The value of 64-1/3 (641/3-642/3), is
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`32^(2/5)`