Advertisements
Advertisements
Question
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Options
0.1718
5.8282
0.4142
2.4142
Solution
Given that `sqrt2= 1.4142`, we need to find the value of .`sqrt((sqrt2-1)/(sqrt2+1))`
We can rationalize the denominator of the given expression. We know that rationalization factor for `sqrt2+1` is`sqrt2-1`. We will multiply numerator and denominator of the given expression `sqrt((sqrt2-1)/(sqrt2+1))`by`sqrt2-1`, to get
`sqrt((sqrt2-1)/(sqrt2+1)) = sqrt((sqrt2-1)/(sqrt2+1)xxsqrt((sqrt2-1)/(sqrt2-1)))`
` = sqrt((sqrt2-1)^2/((sqrt2)^2-1))`
` = sqrt((sqrt2-1)^2)/(sqrt((sqrt2)^2-1))`
\[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}} = \frac{\sqrt{2} - 1}{1}\]
Putting the value of `sqrt2`, we get
`sqrt2 -1 = 4.4142 - 1`
` = 0.4142`
APPEARS IN
RELATED QUESTIONS
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
The seventh root of x divided by the eighth root of x is
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?