Advertisements
Advertisements
प्रश्न
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
उत्तर
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
`=(((ab+1)/b)^mxx((ab-1)/b)^n)/(((ab+1)/a)^mxx((ab-1)/a)^n)`
`=(((ab+1)/b)/((ab+1)/a))^mxx(((ab-1)/b)/((ab-1)/a))^n`
`=((ab+1)/bxxa/(ab+1))^mxx((ab-1)/bxxa/(ab-1))^n`
`=(a/b)^mxx(a/b)^n`
`=(a/b)^(m+n)`
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `27^x=9/3^x,` find x.
Solve the following equation:
`3^(x+1)=27xx3^4`
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is