Advertisements
Advertisements
प्रश्न
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
विकल्प
`(sqrt(7) + 2)/3`
`(sqrt(7) - 2)/3`
`(sqrt(7) + 2)/5`
`(sqrt(7) + 2)/45`
उत्तर
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is `underlinebb((sqrt(7) + 2)/3)`.
Explanation:
Rationalizing the denominator as follows:
`1/(sqrt(7) - 2) = 1/(sqrt(7) - 2) xx (sqrt(7) + 2)/(sqrt(7) + 2)`
= `(sqrt(7) + 2)/((sqrt(7))^2 - 2^2)`
= `(sqrt(7) + 2)/(7 - 4)`
= `(sqrt(7) + 2)/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`