Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
उत्तर
We can simplify the expression `(3 + sqrt3)(5 - sqrt2)`as
`(3 + sqrt3)(5 - sqrt2) = 3 xx 5 - 3 xx sqrt2 + 5xx sqrt3 - sqrt3 xx sqrt2`
`= 15 - 3sqrt2 + 5sqrt3 - sqrt(3 xx2)`
`= 15 - 3sqrt2 + 5sqrt3 - sqrt6`
Hence the value of the expression is `15 - 3sqrt2 + 5sqrt3 - sqrt6`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Rationalise the denominator of the following:
`1/(sqrt7-2)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Simplify:
`(256)^(-(4^((-3)/2))`