Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
उत्तर
We can simplify the expression `(3 + sqrt3)(5 - sqrt2)`as
`(3 + sqrt3)(5 - sqrt2) = 3 xx 5 - 3 xx sqrt2 + 5xx sqrt3 - sqrt3 xx sqrt2`
`= 15 - 3sqrt2 + 5sqrt3 - sqrt(3 xx2)`
`= 15 - 3sqrt2 + 5sqrt3 - sqrt6`
Hence the value of the expression is `15 - 3sqrt2 + 5sqrt3 - sqrt6`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Value of `root(4)((81)^-2)` is ______.
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`(1/27)^((-2)/3)`