Advertisements
Advertisements
प्रश्न
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
उत्तर
Given that
`(2+sqrt3)(2-sqrt3)`
It can be simplified as
`(2+sqrt3)(2-sqrt3) = 2 xx2-2xxsqrt3+2xx sqrt3 - (sqrt3)^2`
` = 4-2sqrt3+2sqrt3 - `
`= 4-3`
` = 1`
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Simplify of the following:
`root(3)4 xx root(3)16`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Write the reciprocal of \[5 + \sqrt{2}\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`