Advertisements
Advertisements
प्रश्न
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
उत्तर
Given that:.`x = 3+2sqrt2` It can be written in the form `(a+b)^2 = a^2 +b^2 +2ab` as
`sqrtx = sqrt(3+2sqrt2)`
` = sqrt(2+1+2xx 1xxsqrt2)`
` = sqrt((sqrt2)^2+ (1)^2 +2 xx 1 xx sqrt2 `
` = sqrt((sqrt2+1)^2)`
` = sqrt2 +1`
Therefore,
`1/sqrtx = 1/(sqrt2+1)`
We know that rationalization factor for `sqrt2`+1 is `sqrt2`-1 . We will multiply numerator and denominator of the given expression `1/(sqrt2+1)`by, `sqrt2-1,`to get
`1/(sqrt2 +1) xx (sqrt2-1)/(sqrt2-1) = (sqrt2-1)/((sqrt2) ^2 - (1)^2)`
`=(sqrt2-1)/(2-1)`
`= sqrt2 - 1`
Hence
`sqrtx - 1/sqrtx = sqrt2 +1 - (sqrt2 - 1)`
` = sqrt 2+1 - sqrt2 +1`
` =2 `
Therefore, value of the given expression is 2.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`