Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
उत्तर
We know that `(a - b)^2 = a^2 + b^2 - 2ab`. We will use this property to simplify the expression
`(sqrt5 - sqrt3)`
`∴ (sqrt5 - sqrt3)^2 = (sqrt5)^2 + (sqrt3)^2 - 2 xx sqrt5 xx sqrt3`
`= sqrt5 xx sqrt5 + sqrt3 xx sqrt3 - 2 xx sqrt(5 xx 3)`
`= sqrt(5 xx 5) + sqrt(3 xx 3) - 2 xx sqrt(5 xx 3)`
`= (5^2)^(1/2) + (3^2)^(1/2) - 2sqrt15`
`= 5^1 + 3^1 - 2sqrt15`
`= 8 - 2sqrt15`
Hence the value of expression is `8 - 2sqrt15`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Write the reciprocal of \[5 + \sqrt{2}\].
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
Classify the following number as rational or irrational:
`1/sqrt2`
Classify the following number as rational or irrational:
2π
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`