Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
उत्तर
Let `E = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(3) + sqrt(2)`,
`E = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) xx (sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
= `(sqrt(3) + sqrt(2))^2/((sqrt(3))^2 - (sqrt(2))^2` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `((sqrt(3))^2 + (sqrt(2))^2 + 2sqrt(3)sqrt(2))/(3 - 2)` ...[Using identity, (a + b)2 = a2 + b2 + 2ab]
= `3 + 2 + 2sqrt(6)`
= `5 + 2sqrt(6)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`