Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
उत्तर
Let `E = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(3) + sqrt(2)`,
`E = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) xx (sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
= `(sqrt(3) + sqrt(2))^2/((sqrt(3))^2 - (sqrt(2))^2` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `((sqrt(3))^2 + (sqrt(2))^2 + 2sqrt(3)sqrt(2))/(3 - 2)` ...[Using identity, (a + b)2 = a2 + b2 + 2ab]
= `3 + 2 + 2sqrt(6)`
= `5 + 2sqrt(6)`
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(3)4 xx root(3)16`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`