Advertisements
Advertisements
प्रश्न
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
उत्तर
We know that rationalization factor for `2sqrt5 - 3` is `2sqrt5 + 3`. We will multiply numerator and denominator of the given expression `(3sqrt2 + 1)/(2sqrt5 - 3)` by `2sqrt5 + 3` to get
`(3sqrt2 + 1)/(2sqrt5 - 3) xx (2sqrt5 + 3)/(2sqrt5 + 3) = (3sqrt2 xx 2sqrt5 + 3 xx 3sqrt2 + 2sqrt5 + 3)/((2sqrt5)^2 - (3)^2)`
`= (3 xx 2 xx sqrt2 xx sqrt5 + 3 xx 3sqrt2 + 2sqrt5 + 3)/(4 xx 5 - 9)`
`= (6sqrt(2 xx 5) + 9 sqrt2 + 2sqrt5 + 3)/(4 xx 5 - 9)`
`= (6sqrt10 + 9sqrt2 + 2sqrt5 + 3)/11`
Hence the given expression is simplified with rational denominator to `(6sqrt10 + 9sqrt2 + 2sqrt5 + 3)/11`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationalise the denominator of each of the following
`1/sqrt12`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`