Advertisements
Advertisements
प्रश्न
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
उत्तर
We know that rationalization factor for `2sqrt2 - sqrt3` is `2sqrt2 + sqrt3` . We will multiply numerator and denominator of the given expression `(sqrt3 + 1)/(2sqrt2 - sqrt3)` by `2sqrt2 + sqrt3` to get
`(sqrt3 + 1)/(2sqrt2 - sqrt3) xx (2sqrt2 + sqrt3)/(2sqrt2 + sqrt3) = (2xx sqrt3 xx sqrt2 + sqrt3 xx sqrt3 + 2sqrt2 + sqrt3)/((2sqrt2)^2 - (sqrt3)^2)`
` = (2sqrt(3xx2) + 3 + 2 sqrt2 + sqrt3)/(4 xx 2 - 3)`
`= (2sqrt6 + 3 + 2sqrt2 + sqrt3)/(8 - 3)`
`= (2sqrt6 + 3 + 2sqrt2 + sqrt3)/5`
`= (2sqrt6 + 3 + 2sqrt2 + sqrt3)/5`
Hence the given expression is simplified with rational denominator to `(2sqrt6 + 3 + 2sqrt2 + sqrt3)/5`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Rationalise the denominator of the following:
`1/sqrt7`
Simplify of the following:
`root(4)1250/root(4)2`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`