Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`16/(sqrt(41) - 5)`
उत्तर
Let `E = 16/(sqrt(41) - 5)`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(41) + 5`,
`E = 16/(sqrt(41) - 5) xx (sqrt(41) + 5)/(sqrt(41) + 5)`
= `(16(sqrt(41) + 5))/((sqrt(41))^2 - (5)^2` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `(16(sqrt(41) + 5))/(41 - 25)`
= `(16(sqrt(41) + 5))/16`
= `sqrt(41) + 5`
APPEARS IN
संबंधित प्रश्न
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`