Advertisements
Advertisements
प्रश्न
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
उत्तर
We know that `x^3 + 1/x^3 = (x + 1/x)(x^2 - 1 + 1/x^2)`. We have to find the value of `x^3 + 1/x^3`
As x = `2 + sqrt3` therefore
`1/x = 1/(2 + sqrt3)`
We know that rationalization factor for `2 + sqrt3` is `2 - sqrt3`. We will multiply numerator and denominator of the given expression `1/2 + sqrt3` by `2 - sqrt3` to get
`1/x = 1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3)`
`= (2 - sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2 - sqrt3)/(4 - 3)`
`= 2 - sqrt3`
Putting the value of x and 1/x we get
`x^3 + 1/x^3= (2 + sqrt3 + 2 - sqrt3)((2 + sqrt3)^2 - 1+ (2 - sqrt3)^2)`
= `4(2^2 + (sqrt3))^2 + 2 xx 2 xx sqrt3 - 1 + 2^2 + (sqrt3)^2 - 2 xx 2 xx sqrt3)`
`= 4(4 + 3 + 4sqrt3 - 1 + 4 + 3 - 4sqrt3)`
= 52
Hence the value of the given expression 52.
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify the following expression:
`(sqrt5+sqrt2)^2`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`