Advertisements
Advertisements
प्रश्न
Simplify the following expression:
`(sqrt5+sqrt2)^2`
उत्तर
The given expression is `(sqrt5 + sqrt2)^2`
We know that (a + b)2 = a2 + b2 + 2ab
⇒ `(sqrt5 + sqrt2)^2 =(sqrt5)^2 + (sqrt2)^2 + 2 xx sqrt5 xx sqrt2`
⇒ `(sqrt5 + sqrt2)^2 = 5 + 2 + 2sqrt10`
∴ `(sqrt5 + sqrt2)^2 = 7 + 2sqrt10`
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Classify the following number as rational or irrational:
2π
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`