Advertisements
Advertisements
प्रश्न
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
उत्तर
We know that rationalization factor for `3sqrt2 +2sqrt3` and `sqrt3-sqrt2`are `3sqrt2 - 2sqrt3`and `sqrt3 +sqrt2`respectively. We will multiply numerator and denominator of the given expression `(3sqrt2 -2sqrt3)/ (3sqrt2 +2sqrt3)` and `sqrt12/(sqrt3-sqrt2)`by `3sqrt2-2sqrt3`and `sqrt3 +sqrt2`respectively, to get
`(3sqrt2 -2sqrt3)/ (3sqrt2 +2sqrt3) xx (3sqrt2 -2sqrt3)/ (3sqrt2 -2sqrt3) +sqrt12/(sqrt3-sqrt2) xx (sqrt3 +sqrt2)/(sqrt3 +sqrt2) =((3sqrt2)^2+(2sqrt3)^2 - 2xx 3 sqrt2 xx 2sqrt3)/((3sqrt2)^2 -( 2sqrt3)^2 ) +(sqrt36+sqrt24)/((sqrt3)^2-(sqrt2)^2)`
`= (18+12-12sqrt6)/(18-12) +(6+sqrt24)/(3-2)`
`= (30-12sqrt6 +36 +12sqrt6)/6`
`=66/6`
`=11`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Write the rationalisation factor of \[\sqrt{5} - 2\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`