Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
उत्तर
We know that rationalization factor for `1/sqrta` is `sqrta`.We will multiply numerator and denominator of the given expression `(sqrt3 + 1)/sqrt2` by `sqrt2` to get
`(sqrt3 + 1)/sqrt2 xx sqrt2/sqrt2 = (sqrt2 xx sqrt3 + sqrt2)/(sqrt2 xx sqrt2)`
`= (sqrt6 + sqrt2)/2`
Hence the given expression is simplified to `(sqrt6 + sqrt2)/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`