Advertisements
Advertisements
प्रश्न
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
पर्याय
\[2\sqrt{5}\]
4
2
\[\sqrt{5}\]
उत्तर
Given that. `x=sqrt5 +2 ` Hence `1/x`is given as
`1/x = 1/(sqrt5+2)`.We need to find `x - 1/x`
We know that rationalization factor for `sqrt5+2` is`sqrt5-2`. We will multiply numerator and denominator of the given expression\`1/(sqrt5 +2)` by`sqrt5 - 2`, to get
`1/x = 1/(sqrt5+2 ) xx (sqrt5 - 2)/(sqrt5 -2)`
` = (sqrt 5-2)/((sqrt5)^2 - (2)^2 )`
`=(sqrt5 -2)/(5-4)`
` = sqrt5 - 2`
Therefore,
`x - 1/x=sqrt5 +2 -(sqrt5 - 2)`
`= sqrt5 +2 - sqrt5 +2`
` = 2+2`
` = 4`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Rationalise the denominator of each of the following
`1/sqrt12`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`