Advertisements
Advertisements
प्रश्न
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
विकल्प
\[2\sqrt{5}\]
4
2
\[\sqrt{5}\]
उत्तर
Given that. `x=sqrt5 +2 ` Hence `1/x`is given as
`1/x = 1/(sqrt5+2)`.We need to find `x - 1/x`
We know that rationalization factor for `sqrt5+2` is`sqrt5-2`. We will multiply numerator and denominator of the given expression\`1/(sqrt5 +2)` by`sqrt5 - 2`, to get
`1/x = 1/(sqrt5+2 ) xx (sqrt5 - 2)/(sqrt5 -2)`
` = (sqrt 5-2)/((sqrt5)^2 - (2)^2 )`
`=(sqrt5 -2)/(5-4)`
` = sqrt5 - 2`
Therefore,
`x - 1/x=sqrt5 +2 -(sqrt5 - 2)`
`= sqrt5 +2 - sqrt5 +2`
` = 2+2`
` = 4`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
The rationalisation factor of \[2 + \sqrt{3}\] is
`1/(sqrt(9) - sqrt(8))` is equal to ______.
`root(4)root(3)(2^2)` equals to ______.
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`