Advertisements
Advertisements
प्रश्न
`root(4)root(3)(2^2)` equals to ______.
विकल्प
`2^(-1/6)`
`2^-6`
`2^(1/6)`
`2^6`
उत्तर
`root(4)root(3)(2^2)` equals to `underlinebb(2^(1/6))`.
Explanation:
Given: Number `root(4)root(3)(2^2)`
`root(4)root(3)(2^2) = root(4)((2)^(2/3)`
= `(2)^(2/3 xx 1/4)`
= `(2)^(1/6)`
APPEARS IN
संबंधित प्रश्न
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`