Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
उत्तर
We know that rationalization factor for `2 + sqrt2` is `2 - sqrt2`. We will multiply numerator and denominator of the given expression `(4 + sqrt2)/(2 + sqrt2)` by `2 - sqrt2` to get
`(4 + sqrt2)/(2 + sqrt2) xx (2 - sqrt2)/(2 - sqrt2) = (4 xx 2 - 4 xx sqrt2 + 2 xx sqrt2 - (sqrt2)^2)/((2)^2 - (sqrt2)^2)`
`= (8 - 4sqrt2 + 2sqrt2 - 2)/(4 - 2)`
`= (6 - 2sqrt2)/2`
`= 3 - sqrt2`
On equating rational and irrational terms, we get
`a - sqrtb = 3 - sqrt2`
Hence we get a = 3, b = 2
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.