Advertisements
Advertisements
प्रश्न
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
उत्तर
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7) = (4sqrt(4 xx 7) ÷ 3sqrt(7)) ÷ root(3)(7)`
= `((8sqrt(7))/(3sqrt(7))) ÷ (7)^(1/3)` ...`[∵ root(n)(a) = a^(1/n)]`
= `8/3 ÷ 7^(1/3)`
= `8/(3root(3)(7)`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
Rationalise the denominator of the following:
`3/(2sqrt5)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
The rationalisation factor of \[2 + \sqrt{3}\] is
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.