Advertisements
Advertisements
प्रश्न
The rationalisation factor of \[2 + \sqrt{3}\] is
विकल्प
\[2 - \sqrt{3}\]
\[2 + \sqrt{3}\]
\[\sqrt{2} - 3\]
\[\sqrt{3} - 2\]
उत्तर
We know that rationalization factor for `a+sqrt b` is `a-sqrtb` . Hence rationalization factor of `2+sqrt3` is `2-sqrt3 `.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`