Advertisements
Advertisements
प्रश्न
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
उत्तर
We have, `(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
For rationalising the above equation, we multiply numerator and denominator of LHS by `3 - 2sqrt(5)`, we get
⇒ `((3 - sqrt(5)))/(3 + 2sqrt(5)) xx (3 - 2sqrt(5))/(3 - 2sqrt(5)) = asqrt(5) - 19/11`
⇒ `(3(3 - 2sqrt(5)) - sqrt(5)(3 - 2sqrt(5)))/((3)^2 - (2sqrt(5))^2) = asqrt(5) - 19/11` ...[Using identity, (a – b)(a + b) = a2 – b2]
⇒ `(9 - 6sqrt(5) - 3sqrt(5) + 10)/(9 - 4 xx 5) = asqrt(5) - 19/11`
⇒ `(19 - 9sqrt(5))/(9 - 20) = asqrt(5) - 19/11`
⇒ `(19 - 9sqrt(5))/(-11) = asqrt(5) - 19/11`
⇒ `(9sqrt(5))/11 - 19/11 = asqrt(5) - 19/11`
⇒ `(9sqrt(5))/11 = asqrt(5)`
⇒ `a = 9/11`
APPEARS IN
संबंधित प्रश्न
Classify the following numbers as rational or irrational:
`2-sqrt5`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
Classify the following number as rational or irrational:
`(2sqrt7)/(7sqrt7)`
Classify the following number as rational or irrational:
2π
Rationalise the denominator of the following:
`1/(sqrt7-2)`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`