Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
उत्तर
Let `E = (2 + sqrt(3))/(2 - sqrt(3))`
For rationalising the denominator, multiplying numerator and denominator by `2 + sqrt(3)`,
`E = (2 + sqrt(3))/(2 - sqrt(3)) xx (2 + sqrt(3))/(2 + sqrt(3))`
= `(2 + sqrt(3))^2/((2)^2 - (sqrt(3)^2)`
= `(2^2 + (sqrt(3))^2 + 2 xx 2 xx sqrt(3))/(4 - 3)` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `4 + 3 + 4sqrt(3)` ...[Using identity (a + b)2 = a2 + 2b + b2]
= `7 + 4sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Write the reciprocal of \[5 + \sqrt{2}\].
Classify the following number as rational or irrational:
2π
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.