Advertisements
Advertisements
प्रश्न
Write the reciprocal of \[5 + \sqrt{2}\].
उत्तर
Given that,`5+sqrt2` it’s reciprocal is given as
`1/(5+sqrt2)`
It can be simplified by rationalizing the denominator. The rationalizing factor of `5+sqrt2` is ` 5 - sqrt2`, we will multiply numerator and denominator of the given expression `1/(5+sqrt2)`by, `5-sqrt2` to get
`1/(5+sqrt2) xx (5-sqrt2)/(5-sqrt2) = (5-sqrt2)/((5)^2 - (sqrt2)^2)`
`= (5-sqrt2) /( 25-2)`
` = (5- sqrt2 ) / 23 `
Hence reciprocal of the given expression is `(5- sqrt2 ) / 23 `.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`