Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
उत्तर
We know that rationalization factor for `3sqrt5 - 2sqrt6` is `3sqrt5 + 2sqrt6` . We will multiply numerator and denominator of the given expression `(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)` by `3sqrt5 + 2sqrt6` to get
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6) xx (3sqrt5 + 2sqrt6)/(2sqrt + 2 sqrt6) = (2xx 3 xx sqrt6 + sqrt5 + (2sqrt6)^2 - 3 xx (sqrt5)^2 - 2 xx sqrt5 xx sqrt6)/((3sqrt5)^2 - (2sqrt6)^2)`
`= (6sqrt(6 xx 5) + 4 xx 6 - 3 xx (sqrt5)^2 - 2 xx sqrt5 xx sqrt6)/(9 xx 5 - 4 xx 6)`
` = (6sqrt30 + 24 - 15 - 2sqrt30)/(45 - 24)`
`= (9 + 4sqrt30)/21`
Hence the given expression is simplified to `(9 + 4sqrt30)/21`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Write the rationalisation factor of \[\sqrt{5} - 2\].
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Classify the following number as rational or irrational:
`1/sqrt2`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.