Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
उत्तर
We know that `(a - b)(a + b) = a^2 - b^2`. We will use this porperty to simplify the expression
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
`∴(sqrt8 - sqrt2)(sqrt8 + sqrt2) = (sqrt8)^2 - (sqrt2)^2`
`= sqrt8 xx sqrt8 - sqrt2 xx sqrt2`
`= (8^2)^(1/2) - (2^2)^(1/2)`
`=8^1 - 2^1`
= 6
Hence the value of expression is 6
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Write the rationalisation factor of \[\sqrt{5} - 2\].
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.