Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`1/(sqrt7-sqrt6)`
उत्तर
The given number is `1/(sqrt7 - sqrt6)`
On rationalising the denominator,
⇒ `1/(sqrt7 - sqrt6) = 1/(sqrt7 - sqrt6) xx (sqrt7 + sqrt6)/(sqrt7 + sqrt6)`
We know that (a + b) (a + b) = a2 - b2
⇒ `1/(sqrt7 - sqrt6) = (sqrt7 + sqrt6)/((sqrt7)^2 - (sqrt6)^2)`
⇒ `1/(sqrt7 - sqrt6) = (sqrt7 + sqrt6)/(7 - 6)`
∴ `1/(sqrt7 - sqrt6) = sqrt7 + sqrt6`
APPEARS IN
संबंधित प्रश्न
Classify the following numbers as rational or irrational:
`2-sqrt5`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`