Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`1/(sqrt7-2)`
उत्तर
The given number is `1/(sqrt7 - 2)`
On rationalising the denominator,
⇒ `1/(sqrt7 - 2) = 1/(sqrt7 - 2) xx (sqrt7 + 2)/(sqrt7 + 2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `1/(sqrt7 - 2) = (sqrt7 + 2)/((sqrt7)^2 - (2)^2)`
⇒ `1/(sqrt7 - 2) = (sqrt7 + 2)/(7 - 4)`
∴ `1/(sqrt7 - 2) = (sqrt7 + 2)/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
If \[a = \sqrt{2} + 1\],then find the value of \[a - \frac{1}{a}\].
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`