Advertisements
Advertisements
प्रश्न
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
उत्तर
Let `E = sqrt(2)/(2 + sqrt(2)`
For rationalising the denominator, multiplying numerator and denominator by `2 - sqrt(2)`, we get
= `sqrt(2)/(2 + sqrt(2)) xx (2 - sqrt(2))/(2 - sqrt(2))`
= `(sqrt(2)(2 - sqrt(2)))/((2)^2 - (sqrt(2))^2` ...[Using identity, (a – b)(a + b) = a2 – b2]
= `(sqrt(2) xx sqrt(2)(sqrt(2) - 1))/2`
= `(2(sqrt(2) - 1))/2`
= `sqrt(2) - 1` ...[Put `sqrt(2)` = 1.414]
= 1.414 – 1
= 0.414
APPEARS IN
संबंधित प्रश्न
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`