Advertisements
Advertisements
Question
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Solution
We have, `(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
For rationalising the above equation, we multiply numerator and denominator of LHS by `3 - 2sqrt(5)`, we get
⇒ `((3 - sqrt(5)))/(3 + 2sqrt(5)) xx (3 - 2sqrt(5))/(3 - 2sqrt(5)) = asqrt(5) - 19/11`
⇒ `(3(3 - 2sqrt(5)) - sqrt(5)(3 - 2sqrt(5)))/((3)^2 - (2sqrt(5))^2) = asqrt(5) - 19/11` ...[Using identity, (a – b)(a + b) = a2 – b2]
⇒ `(9 - 6sqrt(5) - 3sqrt(5) + 10)/(9 - 4 xx 5) = asqrt(5) - 19/11`
⇒ `(19 - 9sqrt(5))/(9 - 20) = asqrt(5) - 19/11`
⇒ `(19 - 9sqrt(5))/(-11) = asqrt(5) - 19/11`
⇒ `(9sqrt(5))/11 - 19/11 = asqrt(5) - 19/11`
⇒ `(9sqrt(5))/11 = asqrt(5)`
⇒ `a = 9/11`
APPEARS IN
RELATED QUESTIONS
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Write the rationalisation factor of \[\sqrt{5} - 2\].
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.