Advertisements
Advertisements
प्रश्न
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
उत्तर
We have, `(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
For rationalising the above equation, we multiply numerator and denominator of LHS by `3sqrt(2) + 2sqrt(3)`, we get
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) xx (3sqrt(2) + 2sqrt(3))/(3sqrt(2) + 2sqrt(3)) = 2 - bsqrt(6)`
⇒ `(sqrt(2)(3sqrt(2) + 2sqrt(3)) + sqrt(3)(3sqrt(2) + 2sqrt(3)))/((3sqrt(2))^2 - (2sqrt(3))^2) = 2 - bsqrt(6)` ...[Using identity, (a – b)(a + b) = a2 – b2]
⇒ `(6 + 2sqrt(6) + 3sqrt(6) + 6)/(18 - 12) = 2 - bsqrt(6)`
⇒ `(12 + 5sqrt(6))/6 = 2 - bsqrt(6)`
⇒ `2 + (5sqrt(6))/6 = 2 - bsqrt(6)`
⇒ `bsqrt(6) = - (5sqrt(6))/6`
∴ `b = -5/6`
APPEARS IN
संबंधित प्रश्न
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Rationalise the denominator of the following:
`3/(2sqrt5)`
Rationalise the denominator of the following
`(sqrt2 + sqrt5)/3`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
\[\sqrt{10} \times \sqrt{15}\] is equal to
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`