Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
उत्तर
We know that `(a + b)^2 = a^2 + b^ + 2ab` We will use this property to simplify the expression
`(sqrt3 + sqrt7)^2`
`∴(sqrt3 + sqrt7)^2 = (sqrt3)^2 + (sqrt7)^2 + 2 xx sqrt3 xx sqrt7`
`= sqrt(3 xx 3) + sqrt(7 xx 7) + 2 xx sqrt(3 xx 7)`
`= (3^2)^(1/2) + (7^2)^(1/2) + 2sqrt21`
`= 3^1+ 7^1 + 2sqrt21`
`= 10 + 2sqrt21`
Hence the value of expression is `10 + 2sqrt21`
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Write the rationalisation factor of \[\sqrt{5} - 2\].
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
The rationalisation factor of \[\sqrt{3}\] is
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`